20 d’abril de 2018

Arrels quadrades a Primària? I tant!

Una vegada més advoquem per no confondre una operació amb el seu algorisme. No és el mateix saber dividir que saber executar l'algorisme tradicional de la divisió i podem treballar la noció d'arrel quadrada a l'aula de primària sense ni esmentar l'algorisme estandard de l'arrel quadrada que va traumatitzar a alguns alumnes del segle passat, i que la majoria vam aprendre sense entendre per què funcionava.

A l'igual que per altres operacions que ja vam comentar en posts d'aquest blog, l'algorisme estandard no és l'únic i, encara que eficient (en temps en que no existien calculadores era un procediment eficient per fer el càlcul) probablement, és un dels algorisme menys transparents que podríem haver estudiat. Recomanem efusivament la sèrie de posts sobre algorismes de l'arrel quadrada escrits pel Joan Jareño en el seu blog
En el nostre blog també vam tocar aquest tema en un post anomenat Jocs i pràctica del càlcul: golf on defensavem la possibilitat d'apropar-nos al concepte d'arrel quadrada d'un nombre a partir de l'estimació.

Avui volem afegir a aquestes reflexions un vídeo gravat en el context del mòdul 2 del curs ARAMAT durant la sessió dedicada a nombres decimals


D'aquesta sessió volem destacar més enllà del que es veu al vídeo
  • l'ús de l'applet que apareix a la imatge per introduir la noció de lupa que ens permet la densitat dels nombres decimals 

  • la relació entre el valor obtingut per aproximacions successives en un procés que pot ser tan llarg com vulgem i el nombre que veiem en la pantalla d'una calculadora quan li demanem l'arrel quadrada d'un nombre.

30 de març de 2018

Un altre material per treballar la probabilitat

Complementant la sèrie d'entrades que ja vam dedicar a materials manipulatius per treballar la probabilitat avui parlarem d'un "artefacte" que coneixíem des de que el vam veure dins de la Caixa de Varga però sobre el qual no havíem parat atenció encara.

Es tracta d'una capseta de plàstic on hi ha una sèrie de boletes de diferents colors que apareixen alineades i no es poden moure i la mateixa quantitat de boles (i dels mateixos colors) que es mouen lliurement per la capseta. Al llibre "Combinatoire, statistiques et probabilités de 6 à 14 ans" de T. Varga i M. Dumont (1973) podem veure un dibuix i un petita anàlisi de l'artefacte i de les possibles coincidències quan alineem les boles lliures al costat de les fixes.

Comenten la temptació de pensar que la probabilitat de tenir k coincidències es representa així:
quan en realitat la probabilitat de que hi hagi 5 coincidència, malgrat que petita, és major que la probabilitat de que n'hi hagi 4, que és 0. Aquesta reflexió és extensible a altres quantitats de boles (n) ja que 1/n! = P(k=n) > P(k=n-1) = 0.

En realitat, la probabilitat de tenir k coincidències quan n= 5 es representa així:
En veure aquest gràfic ens ha sorprès que la diferència major en comparació al que proposàven Varga i Dumont com a "intuitiu" no és tant al voltant dels valors 4 i 5 com dels valors 0 i 1. Això es pot apreciar millor en analitzar la representació anterior per a altres quantitats de boles (n variant de 2 a 10)
Representació de la variació de la probabilitat de tenir k coincidències en els casos n=1 a n=10
Es així que ens hem preguntat quina relació hi ha entre P(k=0) i P(k=1) per a diferents valors de n i hem vist que:

  • P(k=0) < P(k=1) quan n és senar i P(k=0) > P(k=1) 
  • la diferència entre les dues probabilitats és 1/n!

Aquestes conclusions deriven de les dades següents:

  • A000166 llista de valors donada per l'OEIS per als desarranjaments, o sigui, permutacions en les quals cap dels elements del conjunt no apareix en la seva posició original
  • A000240 llista de valors donada per l'OEIS per a les permutacions que tenen un únic element del conjunt que apareix en la seva posició original
  • R(n,k) és el nombre de permutacions de n elements en què exactament k elements estan en les seves posicions originals (desarranjaments parcials).
En el joc "Cursa de probabilitat" de la Caixa de Varga apareixen quatre targetes relacionades amb aquest artefacte (n=6):
Font: Perímetre

L'artefacte ofereix la possibilitat d'afegir uns trossets de plàstic que limiten la llibertat de moviment de les boles lliures i que amplien la possibilitat de proposar preguntes de probabilitat

10 de gener de 2018

Pràctica de divisions decimals

Després d'haver introduït la divisió decimal fent repartiments de diners i d'anar, poc a poc, independizant-se del context arriba el moment de practicar el procediment. Aquesta pràctica es pot en un fer en un ambient de resolució de problemes a partir de la proposta de petites investigacions. A continuació relatem un exemple portat a l'aula.

Primer de tot es van proposar unes quantes divisions de nombres enters de dues xifres entre 9 (23:9, 32:9, 45:9, 56:9, 65:9, 71:9 i 17:9) i a partir dels resultats obtinguts es va veure que és molt habitual que el resultat sigui un decimal periòdic i que el període no canvia quan s’invertien les xifres del dividend. Com a ampliació a aquesta primera tasca es va suggerir una pregunta: passarà el mateix amb nombres de tres xifres?

En la discusió de tancament de la tasca es va concluoure que en dividir un nombre natural entre 9 havia dos possibilitats: el resultat era un nombre enter o el resultat era un nombre decimal periòdic i que aquest periode coincidia amb el residu de la divisió entera


Després del treball fet amb el divisor 9 es va proposar investigar que passava amb altres divisors Què passa en dividir un nombre enter entre 3? Quines possibilitats hi ha? 
 


Què passa en dividir un nombre enter entre 2? Quines possibilitats hi ha?


Què passa en dividir un nombre enter entre 4? Quines possibilitats hi ha?


Què passa en dividir un nombre enter entre 5? Quines possibilitats hi ha?


Què passa en dividir un nombre enter entre 6? Quines possibilitats hi ha?


Què passa en dividir un nombre enter entre 8? Quines possibilitats hi ha?


Què passa en dividir un nombre enter entre 7? Quines possibilitats hi ha?


Com sempre que fem investigacions hem de tenir clar que les conclusions a les que arribem són conjectures que poden ser molt febles si els experiments que fem són pocs o poc representatius.


Cometre errades en aquest tipus de context no ha desanimar a cap alumne per dos motius: l’objectiu de practicar divisions decimals ha estat plenament assolit i cometent aquest tipus d’errades ens apropem a entendre com es validen les afirmacions matemàtiques.

Una altra qüestió que ens vam plantejar era analitzar com es feien aquestes divisions amb calculadora. Vam començar plantejant quatre divisions:


I vam preguntar què tenien en comú els resultats obtinguts:


A continuació vam proposar que fessin les mateixes divisions amb calculadora i van trobar un resultat que els va sorprendre molt:



Inspirats en la tasca Noodle Whack, per acabar la classe vam proposar que els alumnes, amb l’ajuda de la calculadora i el que havien après sobre com s’han de llegir els resultats que dóna aquesta eina, trobessin noves divisions entre nombres enters que tinguessin un quocient decimal format per una mateixa xifra repetida:

18 de setembre de 2017

Els esquemes de Graham Fletchy

Fa uns dies, vam conèixer a través del sempre ben informat @druizaguilera aquesta sèrie de vídeos de @gfletchy que creiem que val la pena que recollim en un post ja que ens permeten reflexionar sobre la visió global que tenim sobre algunes temàtiques bàsiques de les matemàtiques en primària.
Sobre aquest vídeo volem destacar l'ús que fa de les fitxes amb cares de dos colors per treballar les descomposicions dels dígits (minut 6:55)
En aquest cas ens agraria destacar com utilitza la noció de "separar" per modelitzar la resta d'una manera que el portarà a fer transparent l'algoritme de la resta. (minut 4:50) 
Aquí destacarem l'ús que fa de la representació "pictòrica" com a pont entre el treball amb material manipulatiu i la representació simbòlica del treball fet amb el material (minut 3:40)
Deixant de banda que al final del vídeo dedica molt de temps a analitzar situacions que es fan més i més complexes a partir d'augmentar la quantitat de xifres del dividend i del divisor, que podria ser discutible, en aquest cas destaquem l'ús intensiu que fa del model rectangular de la multiplicació per recolzar els repartiments que involucren les divisions (minut 2:10)

A l'anàlisi que fa de l'estudi del significat, equivalència i comparació de fraccions destacarem la representació de fraccions sobre la línia numèrica des d'etapes molt més primerenques que les que acostumem a fer-ho per aquí.

Hi ha més informació sobre el treball de @gfletchy en el seu blog. Entre el seus posts destaquem especialment aquell en el que explica com es fan aquests vídeos.

12 de setembre de 2017

Mondrian i la dissecció d'un quadrat en rectangles


Composició en vermell, groc, blau i negre
Oli sobre tela, 59.5x59.5, Piet Mondrian, 1921
Inspirant-se en l'obra de Mondrian MathPickle ens proposa aquest problema que ha estat un èxit cada vegada que l'hem portat a l'aula:
  • Fes una graella de 10x10 
  • Divideix la graella en rectangles diferents. ACLARIMENT: no es poden fer servir dos rectangles iguals però sí que es poden fer servir dos rectangles diferents que tenen la mateixa àrea (per exemple, si hem utilitzat un rectangle de 2x3 no podem utilitzar un altre de 3x2 però sí un de 1x6) 
  • Acoloreix els rectangles seguint l’estètica del pintor Piet Mondrian. 
  • Calcula la diferència entre el nombre de quadrets del rectangle més gran i el del més petit.
REPTE INICIAL: Quina és la diferència més petita que podeu aconseguir?

Els alumnes de 6è de @escolasadako van gaudir molt amb el problema, encara que cap d'ells va aconseguir la menor diferència possible (8)


La solució òptima de diferència 8 es pot obtenir així:

Però els alumnes de l'escola Tecnos de Terrassa, que es van entusiasmar moltíssim amb aquest problema, en conèixer aquesta solució es van proposar el repte de buscar-ne una altra en que cap dels rectangles fos un quadrat. I no només ho van aconseguir sinó que ho van fer amb una solució més "elegant", utilitzant només sis rectangles!

Alguns mestres del seminari "Gràcia Barri Matemàtic"ho van proposar als seus alumnes de Cicle Mitjà i van explicar la seva experiència amb aquest problema al C2EM


Els mestres del departament Col·laboratiu de Matemàtiques de la @FTrams també van proposar el problema als seus alumnes de Cicle Superior en el context del projecte Problemàtiques


Simon Gregg també va proposar aquest problema als seus alumnes



ANEM MÉS ENLLÀ
  • I si la graella inicial no és de 10x10 sinó de 4x4, 5x5, 6x6, …?
Així ho vam proposar als alumnes de 1r d'ESO de @escolasadako





MÉS REPTES
  • És cert que a mida que creix la mida de la graella inicial creix la solució òptima?
  • És cert que si la graella inicial és de nxn, la solució óptima és menor o igual que n?
Podeu trobar un recull de solucions més informació sobre el problema aquí, aquí i a aquí. En aquest últim enllaç trobareu aquest vídeo de Numberphile:




Al nostre blog tenim altres dos posts en que relacionem matemàtiques i art:
  • en un d'ells analitzem els quadrats màgics que apareixen en les obres de Durero i Subirachs
  • en l'altre aprofitem les escultures de Oldemberg per treballar la proporcionalitat geomètrica

5 de setembre de 2017

Puzzles & figures simètriques

Fa un temps el Don Steward va proposar en el seu blog Median una sèrie de puzzles (Three shapes) que vam trobar molt interessants i que vam portar a l'aula.
  • Enganxa entre si, de totes les maneres possibles, les tres peces per obtenir una figura amb un eix de simetria 




Quan vam proposar aquesta tasca a alumnes de 2n d'ESO van trobar de molta ajuda construir-se les peces pra manipular-les, però de tota manera havíen de registrar les solucions trobades sobre paper.

  • Enganxa entre si, de totes les maneres possibles, les tres peces per obtenir una figura amb un eix de simetria









  • Enganxa entre si, de totes les maneres possibles, les tres peces per obtenir una figura amb un eix de simetria 


Durant les sessions de febrer de 2018 del seminari "Gràcia, barri matemàtic" treballant aquest problema vam observar que en tots els casos l'eix de simetria travessava una quantitat senar de quadrets i sempre travessava la peça taronja. Aquestes propietats ens van ajudar a millorar la solució que teniem, fins aconseguir 14 figures simètriques:
També vam discutir ventatges i inconvenients de que les tres peces tinguin colors diferents en contrast a com seria l'activitat si les tres peces fossin del mateix color.

En cas que no s'exigeixi que les peces han de compartir un costat s'afegeixen altres solucions, com per exemple:
Els alumnes van trobar unes quantes d'aquestes solucions:


  • Enganxa entre si, de totes les maneres possibles, les tres peces per obtenir una figura amb un eix de simetria Enganxa entre si, de totes les maneres possibles, les tres peces per obtenir una figura amb un eix de simetria 




En el blog ORCA es pot veure com els fills de la Marleen van trobar aquestes solucions fent servir peces de Lego
En el Reflecting Squarely del projecte Nrich també trobem un problema d'aquest tipus amb les peces:


Allí es deixa molt clar que les peces s'han d'enganxar de manera que els vèrtxes de les tres figures han de ser punts de la graella i el contacte entre les peces no pot ser només el vèrtex. En aquestes condicions les solucions són nou. Trobem molt interessant les tasques d'ampliació que s'hi proposen:
  • Dissenya altres tres figures (la suma de les tres àrees no hauria de superar 10 quadradets) i calcula la quantitat de maneres en es poden disposar per fer formes simètriques
  • Pots trobar tres figures que donin lloc a més solucions que el cas original?
  • Pots trobar tres figures per a les quals no hi hagi solució?